

GEEK GUIDE DevOps for the Rest of Us

2

About the Sponsor �� 4

Introduction ��� 5

Who’s Skeptical of DevOps? ��� 6

DevOps by Any Other Name ��� 8

Start by Establishing a Universal Language ������������������ 10

Sharing Because You Can ��� 14

Getting a Taste with a Few Sample Cases ��������������������� 15

Using Puppet to Establish Standards ����������������������������� 20

Create and Maintain Baseline Configurations ��������������� 23

Standards Across Platforms ��� 24

Use Puppet to Deploy Development Environments ������� 25

Bringing It All Together with Containers ������������������������ 27

Environments on Demand ��� 28

Conclusion ��� 30

Resources �� 31

Table of Contents

JOHN S. TONELLO is the Director of IT and Communications Manager for NYSERNet,
New York’s regional optical networking company, serving the state’s colleges, universities
and research centers. He’s been a Linux user and enthusiast since building his first Slackware
system from diskette more than 20 years ago.

GEEK GUIDE DevOps for the Rest of Us

3

GEEK GUIDES:
Mission-critical information for the most technical people on the planet.

Copyright Statement
© 2017 Linux Journal. All rights reserved.

This site/publication contains materials that have been created, developed
or commissioned by, and published with the permission of, Linux Journal
(the “Materials”), and this site and any such Materials are protected by
international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Linux Journal or its Web site
sponsors. In no event shall Linux Journal or its sponsors be held liable for technical
or editorial errors or omissions contained in the Materials, including without limitation,
for any direct, indirect, incidental, special, exemplary or consequential damages
whatsoever resulting from the use of any information contained in the Materials.

No part of the Materials (including but not limited to the text, images, audio
and/or video) may be copied, reproduced, republished, uploaded, posted,
transmitted or distributed in any way, in whole or in part, except as permitted under
Sections 107 & 108 of the 1976 United States Copyright Act, without the express
written consent of the publisher. One copy may be downloaded for your personal,
noncommercial use on a single computer. In connection with such use, you may not
modify or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the
property of third parties. You are not permitted to use these trademarks, services
marks or logos without prior written consent of such third parties.

Linux Journal and the Linux Journal logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their
respective owners. If you have any questions about these terms, or if you would
like information about licensing materials from Linux Journal, please contact us
via e-mail at info@linuxjournal.com.

mailto:info@linuxjournal.com

GEEK GUIDE DevOps for the Rest of Us

4

About the Sponsor
Puppet

Puppet is driving the movement to a world of unconstrained

software change. Its revolutionary platform is the industry

standard for automating the delivery and operation of the

software that powers everything around us. More than

33,000 companies—including more than 75 percent of the

Fortune 100—use Puppet’s open source and commercial

solutions to adopt DevOps practices, achieve situational

awareness and drive software change with confidence.

Based in Portland, Oregon, Puppet is a privately held

company with more than 520 employees around the world.

Learn more at http://puppet.com.

http://puppet.com

GEEK GUIDE DevOps for the Rest of Us

5

Introduction
No matter what industry you’re in, you probably find

yourself on a perennial quest to build, modify, test and

release software rapidly, frequently and more reliably—

without driving everyone loony in the process. That’s the

aim of organizations large and small, all of which have long

sought ways to bring developers and IT folks closer together

and benefit from better collaboration and communication.

These efforts have taken many forms and names over

the years, and chances are, you’ve already taken steps to

simplify and standardize the way you build and deploy

things, whether it’s built in-house or bought off the shelf.

DevOps
for the
Rest of Us
 JOHN S. TONELLO

GEEK GUIDE DevOps for the Rest of Us

6

If so, you’re already doing some sort of DevOps—even if

that’s not what you call it.

The benefits are many, but with the rise of the term

DevOps has come the rise of confusion and fear. The

full-court press on your inbox isn’t helping. If you’re

like most, you just want ways to improve what you do

continuously, convince your bosses and C-level executives

that you can make changes without blowing up your

existing operations, do away with boring routine,

and maybe make your team members and customers

happier—and more willing to stick around.

For some, part of the answer is an automation tool

like Puppet, a straightforward open-source tool that

enables you to start simply and grow, keep all your

legacy systems and development tools in place, retire

a bunch of shell scripts and manual tasks, and quietly

become more efficient, predictable and productive—that

is, more “DevOps-y”.

This Geek Guide describes practical ways to use Puppet

across all your platforms—new and legacy—and deploy a

few manifests and modules that will help you automate

configuration management, improve security, fortify your

team and convince the higher-ups that DevOps is a lot

closer and achievable than they might think.

Who’s Skeptical of DevOps?
It’s becoming harder to avoid mention of DevOps anywhere

you go these days. It’s talked about at conferences, in

blogs, job postings and everywhere IT practitioners live

and work. As a result, some shrug it off as the latest fad.

GEEK GUIDE DevOps for the Rest of Us

7

Wait long enough, and it will pass. But unlike true fads,

this one has been adopted in ways small and large by

companies and organizations of all sizes, many of which

are likely to be your customers and competitors.

Still, skepticism is understandable, particularly in

organizations that have invested time and money to build,

modify and deploy what they now have. After all, as a

going concern, you’ve done pretty well on your own,

right? You’ve earned a right to be doubtful and your

bottom line bears you out.

Skepticism is also understandable among those who’ve

been burned by organizational fads in the past. Anyone

who remembers the push for Total Quality Management

in the late 1980s will recall that, as a management

practice, it was easy to wind up with well-planned

garbage. It was the ultimate garbage in, garbage

out management philosophy, because organizations,

anxious to deliver customer-defined quality, easily could

misinterpret the TQM principles or falter when they

struggled to implement them.

Perhaps less credible are the DevOps doubters who

have invested a lot in maintaining the status quo. These

are the people in your organization who are quick to say,

“we’ve always done it this way” or recoil from any kind

of change. These engineers and IT practitioners have

time on their side. Momentum is with them, particularly

if they manage a wide array of legacy systems with an

experienced, legacy staff.

So, who’s skeptical of DevOps? In a word, just about

everyone—who hasn’t tried it.

GEEK GUIDE DevOps for the Rest of Us

8

DevOps by Any Other Name
A certain amount of skepticism is healthy, but when it

comes to DevOps, a lot of the skepticism may be rooted in

the name itself. It’s vague and doesn’t mean the same thing

to everyone. But you don’t need a “DevOps Initiative” to do

DevOps because, at its core, DevOps is fundamentally about

communicating early and often across teams. If you’re

already doing that—or working toward it—you’re already

improving how you work, even if you don’t call it DevOps.

For example, think about how your IT operations team

currently collaborates with your security, network and developer

teams. Do you follow the same company-wide standards?

Do you adhere to common organizational goals of customer

service? You probably can answer with an easy, “Yes.”

Harder to answer are questions like the following:

n How do you share information?

n How do you devise company-wide standards?

n How do you respond to security breaches or

system outages?

But you don’t need a “DevOps Initiative” to
do DevOps because, at its core, DevOps is
fundamentally about communicating early
and often across teams.

GEEK GUIDE DevOps for the Rest of Us

9

n How do you collaborate?

n Is the IT team a bottleneck or seen as the department

of the perpetual “No”?

n What else prevents you from working with and trusting

other teams?

Answers to all those questions impact how you get things

done—or don’t. Collaboration can be especially tricky

between operations and developer teams because they

have opposing priorities. IT’s goal is to create and maintain

reliable and secure systems. The developers need to be

fast-moving, innovative and cutting-edge. This friction may

be masked in scorn as one team fulfills its bit, tosses the

task over the wall to the next team and moves on. Maybe

the tools you use don’t mix and match well and that limits

even well intended collaboration.

Less typical are teams that sit down regularly and hash

things out, even though most know that baking in security,

measurement and deployment requirements is best done

up-front, not at the end of each step when it’s too late or

too costly to do anything about it.

At the end of the day, how well your organization

works—and how well it delivers products and services—

depends on how well you’re positioned to share

information. Data-sharing was one of the best bits of

TQM and ultimately became the base for successful Lean

Management, which itself took on the shape of DevOps

when it was coupled with Agile methods. That evolution

GEEK GUIDE DevOps for the Rest of Us

10

requires buy-in, visibility and communication, which you

can’t just pull out of a hat and wish it to be so.

Start by Establishing a Universal Language
If you’ve ever tried to devise your own common platform to

communicate or share information across teams, you know

it’s no small task. Ticketing and project management tools—

sometimes known as ChatOps—can help, but they go only

so far. They’re certainly useful, so long as they encourage

interaction and don’t replace it.

Though initially conceived as an automation tool,

Puppet and Puppet code can be an effective way to

establish a common language among your operations,

developer and security teams because it’s essentially

executable documentation. Instead of documenting the

steps you take to run other tools and scripts, you could just

run that documentation and automatically bring up systems

that match your needs to the letter.

The key to Puppet’s capabilities is the Puppet domain-

specific language (DSL), which is easy to read, understand

and share. The code describes the desired state of a resource,

whether it’s running on one node or a thousand. This is a

declarative approach; you declare the configurations you want

If you’ve ever tried to devise your own common
platform to communicate or share information
across teams, you know it’s no small task.

GEEK GUIDE DevOps for the Rest of Us

11

and Puppet maintains them. Compare that with an imperative

approach, which doesn’t keep your systems in a consistent

state. Once you make an imperative change, the system is no

longer the same. That can make for some complicated if...then

loops in your bash scripts or simply break them.

Want all your Linux machines to have the same base

firewall rules and your web servers to have something else?

Define the rules once in a few lines of Puppet code, and

Puppet makes sure each node is in compliance. You don’t

need to tell Puppet how to execute something; you just

tell Puppet what state you want your infrastructure and

applications to be in, and Puppet does it for you. This can be

as simple as making sure OpenSSH is enabled on every server

or as sophisticated as deploying fully containerized clusters.

At its heart, Puppet is open source and easy to download

and install. Most of what I reference in this Geek Guide can

be accomplished with open-source Puppet, but if you want

to take it a step further, you can deploy Puppet Enterprise,

which features a browser-based graphical interface and

some handy visual tools for keeping track of things, plus

out-of-the-box automated workflows. It’s also free to

download and use for up to 10 nodes.

Regardless of how you get started, Puppet can manage

packages, services, files, Dockerfiles, users and a wide array

of system parameters and settings. For example, to enable

SSH on your Linux servers, this bit of code will do it for you:

package { ‘openssh’:

 ensure => present,

}

GEEK GUIDE DevOps for the Rest of Us

12

To create a user, you could do something like this:

user { ‘username’:

 ensure => present,

 home => ‘/home/username’,

 shell => ‘/bin/bash’,

 managehome => true,

 gid => ‘username’,

 password => ‘1zi13KdCr$zJvdWm5h552P8b34AjxO11’

 }

You don’t have to tell Puppet how to do something,

just that you want it done. It figures out how on each OS,

including CentOS, Debian, Red Hat, SUSE, Ubuntu and

Windows. Compare this with a non-Puppet way, which would

require you to create different scripts for each OS. There

are enough differences between Red Hat and Debian to

require separate directory paths, for example, and Windows

is another animal entirely. Puppet abstracts away the

differences and enables you to use one common manifest,

not three different ones to manage your resources.

Most people deploy Puppet with a master, which

communicates with Puppet agents on other Linux and

Windows machines, VMs or containers. With a master, you

can deploy common standards everywhere you want them

and nowhere you don’t. You also can run Puppet on a single

machine without a master, but this is more typical of a

testing environment than development or production.

Puppet code is built with key-value pairs, and you can bundle

your directives into classes, which can form modules that can be

GEEK GUIDE DevOps for the Rest of Us

13

shared easily. You also can take advantage of thousands of existing

modules on the Puppet Forge, such as puppetlabs/firewall, a

snippet of which is shown here to describe some firewall rules:

class my_fw::pre {

 Firewall {

 require => undef,

 }

 # Default firewall rules

 firewall { ‘000 accept all icmp’:

 proto => ‘icmp’,

 action => ‘accept’,

 }->

 firewall { ‘001 accept all to lo interface’:

 proto => ‘all’,

 iniface => ‘lo’,

 action => ‘accept’,

 }->

 firewall { ‘002 reject local traffic not on loopback interface’:

 iniface => ‘! lo’,

 proto => ‘all’,

 destination => ‘127.0.0.1/8’,

 action => ‘reject’,

 }->

 firewall { ‘003 accept related established rules’:

 proto => ‘all’,

 state => [‘RELATED’, ‘ESTABLISHED’],

 action => ‘accept’,

 }

}

GEEK GUIDE DevOps for the Rest of Us

14

One of the advantages of Puppet code is that it’s easy

to read, which makes it a good option as a cross-team

universal language. You don’t have to be a firewall expert

to understand the result of the above manifest. Each

firewall rule is expressed with a title and values that are

straightforward and familiar. As a result, you can share

it with other teams readily without having to include a

lot of extra explanation. It is executable documentation,

and the DSL code is concise directives that you might

otherwise articulate in runbooks or on a staff wiki.

Sharing Because You Can
If you’re looking for a way to break the ice with other

teams, you might sit down with some of their more

enthusiastic members and identify resources you’d like

to standardize and automate. It doesn’t have to be

complicated, but by working together to write a few

sample manifests, you’ll start to recognize other ways

you can collaborate, gather feedback and simplify moving

from development to production. As you become more

expert, you can help other teams identify what they’d

like to standardize and automate.

Of course, nobody likes to be told they need to change

One of the advantages of Puppet code is
that it’s easy to read, which makes it a good
option as a cross-team universal language.

GEEK GUIDE DevOps for the Rest of Us

15

the way they do things. They are, however, often open

to learning how you changed the way you do things, and

how those changes might impact what they do. So, after

you’ve changed how you do some things, approach other

teams and share with them the problems you were facing,

how you addressed them, and what the results were—

especially the part about how it made your life better.

Then, ask how what you did might affect what they do,

and offer to collaborate on tackling any problems they

might decide need tackling.

Getting a Taste with a Few Sample Cases
You can create Puppet manifests to accomplish a wide

range of tasks, from deploying Apache and Docker to

enforcing user and group rules. That means everyone can

find ways to use it, particularly if they browse the nearly

5,000 existing modules in the Puppet Forge.

Whether you’re using open-source Puppet or Puppet

Enterprise, you’ll discover ways to deploy resources

confidently that can make it far easier to make development

environments match production environments. In fact, you

can use a wide range of conditionals and system-specific

facts to extend and customize your Puppet code and classes

further. This can be useful in software too, regardless of

whether your team wrote it from scratch or modified an

off-the-shelf solution.

Classes—not to be confused with classes in a

programming sense—are the preferred Puppet way

of defining resources for use in your manifests.

They’re almost like functions found in traditional

GEEK GUIDE DevOps for the Rest of Us

16

programming—snippets that can be maintained in one

place and used over and over again.

For example, the following apache class defines an

httpd package, an httpd.conf file and the httpd service,

and parameters to make it work. This will install the

latest version, make sure the configuration file exists and

run it with an Apache template:

class apache (String $version = ‘latest’) {

 package {‘httpd’:

 ensure => $version, # Using the class parameter from above

 before => File[‘/etc/httpd.conf’],

 }

 file {‘/etc/httpd.conf’:

 ensure => file,

 owner => ‘httpd’,

 content => template(‘apache/httpd.conf.erb’), # Template from a module

 }

 service {‘httpd’:

 ensure => running,

 enable => true,

 subscribe => File[‘/etc/httpd.conf’],

 }

}

By adding conditionals, this manifest could be modified

to install the proper configurations files for each OS.

When combined with the system information-gathering

tool Facter from Puppet, you can enable your classes and

manifests to work nicely across platforms.

GEEK GUIDE DevOps for the Rest of Us

17

Facter returns facts about any host—everything from its

hostname and OS family to IP address and available memory.

Puppet can gather and use these facts in real time, giving broad

visibility into your systems that can be shared and acted upon.

Here’s a bit of output from Facter, executed on a Linux

virtual machine:

$ facter

os => {

 architecture =>[a] “amd64”,

 distro => {

 codename => “trusty”,

 description => “Ubuntu 14.04.5 LTS”,

 id => “Ubuntu”,

 release => {

 full => “14.04”,

 major => “14.04”

 }

 },

Facter returns facts about any host—
everything from its hostname and OS family
to IP address and available memory. Puppet
can gather and use these facts in real time,
giving broad visibility into your systems that
can be shared and acted upon.

GEEK GUIDE DevOps for the Rest of Us

18

Here’s the same output reported by Facter executed on a

Windows machine:

os => {

 architecture => “x64”,

 family => “windows”,

 hardware => “x86_64”,

 name => “windows”,

 release => {

 full => “7”,

 major => “7”

 },

 windows => {

 system32 => “C:\Windows\system32”

 }

}

These values can be captured in Puppet code as

$facts[], and the following example shows how you

might put this into practice to install ntp, the network time

package for Linux servers, which doesn’t happen to work on

Mac or Windows machines:

if ($facts[‘os’][‘name’] == ‘Darwin’) or ($facts[‘os’][‘name’]

 ➥==’windows’) {

 warning(‘This NTP module does not yet work on our Macs and

 ➥Windows boxes.’)

}

else {

 # Normal node, include the class.

GEEK GUIDE DevOps for the Rest of Us

19

 include ntp

}

For the operations team, you could use regular

expressions to define types of nodes to manage, such as

the names of Linux nodes, to deploy common packages

or services more quickly. If you want certain rules to

apply only to web hosts, which you’ve given names like

web1, web2, web3 and webN, you can apply rules in a

single manifest description instead of listing each node

separately. So, instead of writing this:

node ‘web1.example.com’, ‘web2.example.com’, ‘web3.example.com’ {

 include common

 include apache, squid

}

or this:

node ‘web1.example.com’ {

 include common

 include apache

 include squid

}

node ‘web2.example.com’ {

 include common

 include apache

 include squid

}

GEEK GUIDE DevOps for the Rest of Us

20

node ‘web3.example.com’ {

 include common

 include apache

 include squid

}

you could just write this to cover all nodes that begin with

“web” followed by one or more digits:

node /^web\d+$/ {

 include common, squid, apache

}

Now, each time you deploy a new web server for the

developers, you simply have to name the host in this way

for Puppet to install everything in a consistent, reportable

way that meets your standards and serves the needs of

your Ops customers.

Using Puppet to Establish Standards
For anyone who has ever managed systems and the types

of settings described above, there’s a certain joy in letting

Puppet do the work. As your nodes check in every 30

minutes, they get updated automatically. If they don’t

align with your manifests, they’re corrected. If they do

align, they’re left alone.

You probably can begin to imagine how this core

Puppet functionality can be useful beyond the IT shop

and across the organization as a way to create and

GEEK GUIDE DevOps for the Rest of Us

21

enforce baseline system configurations collaboratively. If

your security team has complex security rules that vary

from platform to platform or from on-premises to off,

you can begin to sketch out, or model, those rules as

manifests that guarantee they’re applied every time.

For example, say the security team wants you to

close port 22 on every Linux VM host you have in your

Amazon Web Services S3 cluster, but you want the

port open for everything in your own data center,

particularly everything on a local subnet. If you’ve

given each VM a handy hostname prefix like

on-www.example.com or off-www.example.com, you

could set up a conditional statement in a manifest that

sets the rules appropriately. Chances are, though, you

haven’t named everything like this, and instead you use

VM templates to make sure the host configurations are

appropriate to each setting.

With Facter, though, you can build your security manifests

around available system facts, such as is_virtual, domain or

ipaddress. If the IP address of everything in your Amazon

cloud begins with 172.128, you could use the built-in

variable ipaddress as your trigger:

if $::ipaddress =~ /^172.128/ {

 firewall { ‘000 drop ssh’:

 port => ‘22’,

 proto => ‘all’,

 action => ‘drop’,

 }

}

GEEK GUIDE DevOps for the Rest of Us

22

elseif $::ipaddress =~ /^10.128/ {

 firewall { ‘001 accept ssh’:

 port => ‘22’,

 proto => ‘tcp’,

 action => ‘accept’,

 }

}

else {

 # Take no action on hosts not defined by the above

 fail(“No rule for ssh has been defined for $::ipaddress.”)

}

This is both actionable Puppet code and documentation you

can share and extend. You could add more conditionals to

detect and act on the OS of each system you want to secure,

and you could translate the security team’s rules into manifests

that guarantee the desired state on existing hosts and any new

ones. In the example above, that means any new VM in your

172.128 scope has SSH access blocked by default.

From a DevOps perspective, this solves three problems

in one fell swoop. First, you can engage your security

team up front in defining the manifests. Second, you

can automate the enforcement of the rules everywhere

reliably, and third, you can provide feedback in the form

of real-time system audits that can help you collaboratively

develop and deploy new rules.

In a similar way, you could create Puppet manifests to

define users and groups consistently, something that’s

useful across every team. Again, if you and the security

team want to add certain users to the on-site VMs that are

GEEK GUIDE DevOps for the Rest of Us

23

different from the off-site ones, you can define user classes

and include those in your manifests. And because Puppet

code lets you use password hashes—the same found in /etc/

shadow—you can define all your users on all your VMs—on-

premises and off—with a few lines of clear, sharable code.

From an operations standpoint, this also means you can

get out of the business of manually adding users to each

new machine or removing them later. That free time may

enable you to tackle back-burnered projects sooner, beef up

your skills or simply take your time over lunch for a change.

Create and Maintain
Baseline Configurations
You can begin to see how you can use this process among

your organization’s teams to establish baselines for security,

OS configurations, users, packages, services and even files.

Instead of using custom (and perhaps separate) scripts to

do this work, you could begin to standardize using Puppet

code. Compare this with what you’re probably doing now,

such as creating “golden images” or a proliferation of

custom bash scripts and tools that aren’t standardized.

With Puppet, you don’t suddenly have to retire what

you’re currently doing; you can start small—perhaps just

setting up a few manifests that establish users and set

firewall rules or even set a common time server on all your

Linux hosts. As you become more comfortable, you can

begin to phase out some of the custom stuff and grow your

baseline Puppet manifests. At the same time, you and your

Ops team will spend less time doing low-value rote tasks

and spend more time on high-value work.

GEEK GUIDE DevOps for the Rest of Us

24

Standards Across Platforms
If you’re like most, you don’t have just one kind of server

or system to manage, you have a variety. Some data centers

may even look a bit like the inside of a Jawa Sandcrawler,

filled with machines old and new. You may have new

blades running the latest Windows, Linux, KVM, VMware

or Hyper-V, and a handful of towers or older stuff that you

just can’t get rid of. Keeping it all running is hard enough,

let alone trying to superimpose some sort of baseline or

standard across everything.

Again, you may have different teams tending different

resources, whether they’re Windows or Linux, legacy or

new, on-site or cloud. If you have separate Linux and

Windows groups, you can come together and talk about

ways to automate and standardize common actions, using

Puppet as a way to more readily understand each other’s

needs and goals.

For example, the puppetlabs/windows module contains a

number of tools you can use to manage Windows boxes, from

access control to Windows Server Update Service (WSUS).

It can interact with PowerShell, manage registry keys, build

IIS sites and virtual applications, manipulate environmental

variables and manage the installation of software with

puppetlabs-chocolatey, a sort of apt tool for Windows.

This module runs under Puppet Enterprise, and it’s a good

way to become comfortable with Puppet while bringing

separate Linux and Windows teams closer together,

something that’s never easy even in the best of times. You

won’t solve their differences overnight, but you can get

them talking for a change.

GEEK GUIDE DevOps for the Rest of Us

25

Use Puppet to Deploy
Development Environments
If you’re not quite ready to reach out beyond your team,

but you want to start finding ways to more confidently

collaborate, you might consider using Puppet to build and

deploy a development environment. With automation,

you then can replicate it as a fully functional production

environment—or a model of one you can share.

For example, you might set up a single Puppet

master that your teams share, but deploy separate

nodes for web and database servers. For Apache,

you could deploy the puppetlabs/apache module,

which uses a single manifest to install the default

configuration appropriate to your operating system,

applying unique defaults for Debian, Red Hat, FreeBSD

and Gentoo. You can quickly set up virtual hosts too,

with or without certs.

Adding a virtual host user.example.com can be as

straightforward as this:

apache::vhost { ‘user.example.com’:

 port => ‘80’,

 docroot => ‘/var/www/user’,

 docroot_owner => ‘www-data’,

 docroot_group => ‘www-data’,

}

In one small block of code, you can enable this website

to run on port 80 and set ownership of the document

directory. To deploy SSL and non-SSL sites simultaneously,

GEEK GUIDE DevOps for the Rest of Us

26

you might do something like this:

The non-ssl virtual host

apache::vhost { ‘mix.example.com non-ssl’:

 servername => ‘mix.example.com’,

 port => ‘80’,

 docroot => ‘/var/www/mix’,

}

The SSL virtual host at the same domain

apache::vhost { ‘mix.example.com ssl’:

 servername => ‘mix.example.com’,

 port => ‘443’,

 docroot => ‘/var/www/mix’,

 ssl => true,

}

When you spin up new nodes, you can use their

unique hostnames and IP addresses (drawn from Facter)

to deploy web servers. Check the Resources section at

the end of this ebook for details on how to do this and

a wide range of customizations. From a development

standpoint, this is a clean, fast way to deploy new

websites on nodes. When everything works the way

you want, you can use the same Puppet manifests to

deploy to production.

From a DevOps perspective, building basic rules for

deploying Apache (or other services and packages)

wil l save a lot of time and give developers a shorter,

clearer path to development environments. Instead of

GEEK GUIDE DevOps for the Rest of Us

27

cloning a VM and then modifying it to accommodate

unique virtual hosts, which can be a trick to keep

straight, you can use Puppet to define the parameters

and the nodes in clear, readable and shareable code.

At the same time with vRealize Orchestrator, and Puppet’s

plugin for it, you can automate and control release cycles

of entire application suites—even complex ones—from dev

to test to production. This sort of app-level automation will

lead to increased agility for any IT team.

If you want to install, configure and manage MySQL,

MariaDB, MongoDB or another database, you can

standardize that too. Instead of manually creating users or

default databases and permissions, define them with Puppet

code to confidently—and quickly—create a development

environment that easily can be deployed in production and

suit the needs of developers.

Bringing It All Together with Containers
If you’re working with Docker and containers—or want to—

there are some great resources for deploying a complete

Instead of cloning a VM and then modifying it
to accommodate unique virtual hosts, which
can be a trick to keep straight, you can use
Puppet to define the parameters and the
nodes in clear, readable and shareable code.

GEEK GUIDE DevOps for the Rest of Us

28

working environment with Docker Compose. Again, this is

a perfect way to break the ice with other teams and work

together on new solutions.

The Puppet modules garethr/docker and

puppetlabs/docker_platform are a great place to start.

Together, these modules have been downloaded from

the Puppet Forge nearly two million times because they

provide a fast, nearly painless way to deploy Docker.

Adding Docker Compose enables you to build out entire

well-defined container clusters.

Docker Compose uses YAML files to describe a set of

containers, and those files build and run those containers

automatically. The puppetlabs/puppet-in-docker-examples

docker-compose.yml file will deploy a fully functional Puppet

master and a handful of nodes, including puppetboard

and puppetexplorer, two dashboard components. You’ll

end up with an environment that’s perfect for Puppet

experimentation. If you mess up something, you can deploy

a whole new containerized Puppet environment in a few

minutes—and so can other teams. It’s a great way to try

Puppet with zero risk and very few resources. In fact, you can

spin up the whole thing on a modest Linux VM.

Environments on Demand
Whether or not you’re using containers, you can begin to see

how Puppet can help move your organization closer to trusted

self-provisioning, the Holy Grail for developers using DevOps.

If you ask developers about DevOps, they’re the ones to

argue that it falls down because they still have to wait for

operations to give them servers. Everything Ops has done to

GEEK GUIDE DevOps for the Rest of Us

29

improve speed, communication and visibility up to this point

can easily bottleneck here, because developers often just don’t

want to—or feel they can’t—wait for operations to do its thing.

Despite that, operations and security teams don’t want

to just hand over the power of provisioning to developers.

There’s simply too much risk, including the risk of losing

track of everything out there.

But, even trusted Ops-built machines aren’t risk-free.

Maybe someone testing a new app will turn off firewall

rules and forget to turn them back on. Maybe they’ll use a

quick password that’s a hacking risk.

Part of the fear Ops teams hold for self-provisioning is what

happens after a machine is rolled out. Something created

for a quick, day-long test isn’t the issue; it’s the machine

that’s spun up and left running long after it’s needed.

By establishing baseline Puppet manifests, you can ensure

that each machine adheres to specific standards. If those

standards are amended, you don’t have to hunt down

each node. Puppet will make the updates and changes

automatically everywhere. If developers need new parameters

on all their MongoDB nodes, you can roll them out by

modifying a single manifest. This adds speed and confidence

on both sides, a key to thinking in a DevOps way.

By working together to define Puppet manifests, you can

move much closer to self-provisioning, because you can

define how firewalls, packages, services, networking and

patches are deployed and maintained. If you’re running

Puppet Enterprise, you can discover your infrastructure

automatically—on- and off-site VMs and bare metal—and

provision machines based on the policies you define. Instead

GEEK GUIDE DevOps for the Rest of Us

30

of building images and running manual scripts, you’ll have

more control over the entire process and more confidence

to enable on-demand nodes.

If you’re a VMware shop, check out Puppet and VMware

vRealize Automation, a way to put together a complete

self-provisioning solution. Read more in the Resources section.

Conclusion
DevOps is about changing how you think about work first

and changing how you work second. Organizations that

create software—or customize off-the-shelf software to

suite their needs—have evolved to do that task as well as

possible, and there’s a lot at stake when contemplating even

the smallest change. But before you set out to change what

you do, you have to think about how you do it. Without

that self-reflection, you won’t convince your team, your

peers, your bosses or yourself that it will be sustainable.

Puppet can give you a place to start the conversation and

think anew about the work you’re already doing. Puppet

helps because it’s not one-size-fits-all, but a unique tool

that can be used across teams and within them. It doesn’t

require anyone to shelve tools they like and trust, but it

works alongside them to make them better. Regardless

of what you call the process, it can help you collaborate

and build clearer understanding of functions across teams,

which will make for better outcomes.

At the end of the day, your teams will have new ways to

work together to solve shared problems, and that will lead

to faster and better deployments, greater agility to handle

change and a greater ability to position your organization

GEEK GUIDE DevOps for the Rest of Us

31

and company to meet the next wave of challenges. You’ll

also have more fun doing it, and that’s great for all of us.n

Resources

Puppet Firewall Module: https://forge.puppet.com/puppetlabs/firewall

and https://docs.puppet.com/pe/latest/quick_start_firewall.html

Puppet Tools: https://www.puppet.com/puppet-tools

Writing Puppet Manifests: https://www.digitalocean.com/community/

tutorials/configuration-management-101-writing-puppet-manifests

Regular Expressions:

https://docs.puppet.com/puppet/4.9/lang_node_definitions.html

Puppet Classes: https://docs.puppet.com/puppet/4.9/lang_classes.html

Puppet Conditionals:

https://docs.puppet.com/puppet/4.9/lang_conditional.html

Puppet on Windows: https://forge.puppet.com/puppetlabs/windows

Puppet Enterprise: https://puppet.com/product

Docker Compose: https://docs.docker.com/compose

and https://puppet.com/blog/

docker-compose-and-docker-network-support-puppet

Puppet Apache: https://forge.puppet.com/puppetlabs/apache

Puppet MySQL: https://forge.puppet.com/puppetlabs/mysql

VMware vRealize: http://www.vmware.com/products/vrealize-suite.html

and https://puppet.com/

blog/a-guide-to-puppet-integration-vmware-vrealize-automation

https://forge.puppet.com/puppetlabs/firewall
https://docs.puppet.com/pe/latest/quick_start_firewall.html
https://www.puppet.com/puppet-tools
https://docs.puppet.com/puppet/4.9/lang_node_definitions.html
https://docs.puppet.com/puppet/4.9/lang_classes.html
https://docs.puppet.com/puppet/4.9/lang_conditional.html
https://forge.puppet.com/puppetlabs/windows
https://puppet.com/product
https://docs.docker.com/compose
https://forge.puppet.com/puppetlabs/apache
https://forge.puppet.com/puppetlabs/mysql
http://www.vmware.com/products/vrealize-suite.html
https://www.digitalocean.com/community/tutorials/configuration-management-101-writing-puppet-manifests
https://puppet.com/blog/docker-compose-and-docker-network-support-puppet
https://puppet.com/blog/a-guide-to-puppet-integration-vmware-vrealize-automation

